The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
A matriz de espalhamento Sinclair é definida em um alcance fixo de radar. Se um alvo de radar se estender na direção do alcance, o sinal refletido ou a matriz de dispersão composta sofrerá interação de reflexões múltiplas. Como a matriz de dispersão está sujeita a parâmetros do alvo, como forma, tamanho, orientação, material e parâmetros de radar como frequência, polarização e ângulo de incidência, é difícil especificar uma matriz de dispersão representativa de um alvo geral. Portanto, escolhemos o alvo mais simples, o fio, e sua matriz de espalhamento para examinar o efeito dos alvos alinhados na direção do alcance em relação à matriz de espalhamento composta. Primeiramente, apresentamos uma fórmula simples para a matriz de espalhamento composta de fios com a diferença de fase devido ao espaçamento. Em seguida, empregamos o método FDTD para examinar os fenômenos de espalhamento, alterando o espaçamento na direção do alcance. O resultado do FDTD revela que dois fios podem se tornar geradores de componentes de esfera (placa) e refletor de canto diédrico (diplano); e que quatro fios podem se tornar um bom gerador de componentes helicoidais. Esses fenômenos são verificados com medições laboratoriais. A partir do resultado, a decomposição do alvo deve ser cuidadosamente realizada em termos de alcance. Se a resolução de alcance de um radar não for suficientemente alta, a matriz de dispersão do alvo desejado pode ser afetada pelos alvos atrás.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Kenji KITAYAMA, Yoshio YAMAGUCHI, Jian YANG, Hiroyoshi YAMADA, "Compound Scattering Matrix of Targets Aligned in the Range Direction" in IEICE TRANSACTIONS on Communications,
vol. E84-B, no. 1, pp. 81-88, January 2001, doi: .
Abstract: The Sinclair scattering matrix is defined in a fixed radar range. If a radar target extends in the range direction, the reflected signal or the compound scattering matrix will undergo interaction of multiple reflections. Since scattering matrix is subject to target parameters such as shape, size, orientation, material, and radar parameters as frequency, polarization, and incidence angle, it is difficult to specify a representative scattering matrix of a general target. Therefore we choose the simplest target, wire, and its scattering matrix to examine the effect of targets aligned in the range direction with respect to the compound scattering matrix. First, we present a simple formula for the compound scattering matrix of wires with the phase difference due to spacing. Then, we employed the FDTD method to examine the scattering phenomena, changing the spacing in the range direction. The FDTD result reveals that two wires can become sphere (plate) and dihedral corner reflector (diplane) component generators; and that four wires can become a good helix component generator. These phenomena are verified with a laboratory measurement. From the result, the target decomposition should be carefully carried out in terms of range. If a range resolution of a radar is not high enough, the scattering matrix of the desired target may be affected by the targets behind.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e84-b_1_81/_p
Copiar
@ARTICLE{e84-b_1_81,
author={Kenji KITAYAMA, Yoshio YAMAGUCHI, Jian YANG, Hiroyoshi YAMADA, },
journal={IEICE TRANSACTIONS on Communications},
title={Compound Scattering Matrix of Targets Aligned in the Range Direction},
year={2001},
volume={E84-B},
number={1},
pages={81-88},
abstract={The Sinclair scattering matrix is defined in a fixed radar range. If a radar target extends in the range direction, the reflected signal or the compound scattering matrix will undergo interaction of multiple reflections. Since scattering matrix is subject to target parameters such as shape, size, orientation, material, and radar parameters as frequency, polarization, and incidence angle, it is difficult to specify a representative scattering matrix of a general target. Therefore we choose the simplest target, wire, and its scattering matrix to examine the effect of targets aligned in the range direction with respect to the compound scattering matrix. First, we present a simple formula for the compound scattering matrix of wires with the phase difference due to spacing. Then, we employed the FDTD method to examine the scattering phenomena, changing the spacing in the range direction. The FDTD result reveals that two wires can become sphere (plate) and dihedral corner reflector (diplane) component generators; and that four wires can become a good helix component generator. These phenomena are verified with a laboratory measurement. From the result, the target decomposition should be carefully carried out in terms of range. If a range resolution of a radar is not high enough, the scattering matrix of the desired target may be affected by the targets behind.},
keywords={},
doi={},
ISSN={},
month={January},}
Copiar
TY - JOUR
TI - Compound Scattering Matrix of Targets Aligned in the Range Direction
T2 - IEICE TRANSACTIONS on Communications
SP - 81
EP - 88
AU - Kenji KITAYAMA
AU - Yoshio YAMAGUCHI
AU - Jian YANG
AU - Hiroyoshi YAMADA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E84-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2001
AB - The Sinclair scattering matrix is defined in a fixed radar range. If a radar target extends in the range direction, the reflected signal or the compound scattering matrix will undergo interaction of multiple reflections. Since scattering matrix is subject to target parameters such as shape, size, orientation, material, and radar parameters as frequency, polarization, and incidence angle, it is difficult to specify a representative scattering matrix of a general target. Therefore we choose the simplest target, wire, and its scattering matrix to examine the effect of targets aligned in the range direction with respect to the compound scattering matrix. First, we present a simple formula for the compound scattering matrix of wires with the phase difference due to spacing. Then, we employed the FDTD method to examine the scattering phenomena, changing the spacing in the range direction. The FDTD result reveals that two wires can become sphere (plate) and dihedral corner reflector (diplane) component generators; and that four wires can become a good helix component generator. These phenomena are verified with a laboratory measurement. From the result, the target decomposition should be carefully carried out in terms of range. If a range resolution of a radar is not high enough, the scattering matrix of the desired target may be affected by the targets behind.
ER -