The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Usando um método de elementos finitos de vetor completo (FEM) com elementos curvilíneos híbridos de borda/nodais, uma natureza monomodo de fibras de cristal fotônico orientadoras de índice, também chamadas de fibras perfuradas (HFs), é analisada com precisão em função do comprimento de onda. O índice efetivo de revestimento, que é um parâmetro de projeto muito importante para a realização de um HF monomodo e é definido como o índice efetivo do revestimento de cristal fotônico infinito se o núcleo estiver ausente, também é determinado usando o FEM. Na teoria tradicional das fibras, uma frequência normalizada, V, é frequentemente usado para determinar o número de modos guiados em fibras de índice degrau. Para adaptar o conceito de V-parâmetro para HFs, o raio efetivo do núcleo, aef, é determinado usando a abertura numérica real fornecida pelo FEM. Além disso, a dispersão da velocidade de grupo dos HFs monomodo é calculada em função de seus parâmetros geométricos, e a birrefringência modal dos HFs é investigada numericamente.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Masanori KOSHIBA, "Full-Vector Analysis of Photonic Crystal Fibers Using the Finite Element Method" in IEICE TRANSACTIONS on Electronics,
vol. E85-C, no. 4, pp. 881-888, April 2002, doi: .
Abstract: Using a full-vector finite element method (FEM) with curvilinear hybrid edge/nodal elements, a single-mode nature of index-guiding photonic crystal fibers, also called holey fibers (HFs), is accurately analyzed as a function of wavelength. The cladding effective index, which is very important design parameter for realizing a single-mode HF and is defined as the effective index of the infinite photonic crystal cladding if the core is absent, is also determined using the FEM. In traditional fiber theory, a normalized frequency, V, is often used to determine the number of guided modes in step-index fibers. In order to adapt the concept of V-parameter to HFs, the effective core radius, aeff, is determined using the actual numerical aperture given by the FEM. Furthermore, the group velocity dispersion of single-mode HFs is calculated as a function of their geometrical parameters, and the modal birefringence of HFs is numerically investigated.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e85-c_4_881/_p
Copiar
@ARTICLE{e85-c_4_881,
author={Masanori KOSHIBA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Full-Vector Analysis of Photonic Crystal Fibers Using the Finite Element Method},
year={2002},
volume={E85-C},
number={4},
pages={881-888},
abstract={Using a full-vector finite element method (FEM) with curvilinear hybrid edge/nodal elements, a single-mode nature of index-guiding photonic crystal fibers, also called holey fibers (HFs), is accurately analyzed as a function of wavelength. The cladding effective index, which is very important design parameter for realizing a single-mode HF and is defined as the effective index of the infinite photonic crystal cladding if the core is absent, is also determined using the FEM. In traditional fiber theory, a normalized frequency, V, is often used to determine the number of guided modes in step-index fibers. In order to adapt the concept of V-parameter to HFs, the effective core radius, aeff, is determined using the actual numerical aperture given by the FEM. Furthermore, the group velocity dispersion of single-mode HFs is calculated as a function of their geometrical parameters, and the modal birefringence of HFs is numerically investigated.},
keywords={},
doi={},
ISSN={},
month={April},}
Copiar
TY - JOUR
TI - Full-Vector Analysis of Photonic Crystal Fibers Using the Finite Element Method
T2 - IEICE TRANSACTIONS on Electronics
SP - 881
EP - 888
AU - Masanori KOSHIBA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E85-C
IS - 4
JA - IEICE TRANSACTIONS on Electronics
Y1 - April 2002
AB - Using a full-vector finite element method (FEM) with curvilinear hybrid edge/nodal elements, a single-mode nature of index-guiding photonic crystal fibers, also called holey fibers (HFs), is accurately analyzed as a function of wavelength. The cladding effective index, which is very important design parameter for realizing a single-mode HF and is defined as the effective index of the infinite photonic crystal cladding if the core is absent, is also determined using the FEM. In traditional fiber theory, a normalized frequency, V, is often used to determine the number of guided modes in step-index fibers. In order to adapt the concept of V-parameter to HFs, the effective core radius, aeff, is determined using the actual numerical aperture given by the FEM. Furthermore, the group velocity dispersion of single-mode HFs is calculated as a function of their geometrical parameters, and the modal birefringence of HFs is numerically investigated.
ER -