The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Em sistemas de comunicação de múltiplas entradas e múltiplas saídas (MIMO), os autovalores das matrizes de correlação de canais desempenham um papel essencial para a análise de desempenho e, particularmente, a investigação sobre seu comportamento em ambientes variantes no tempo regidos por uma determinada estatística é um problema importante. Este artigo primeiro fornece as expressões teóricas para as distribuições marginais de todos os autovalores ordenados das matrizes de correlação MIMO sob ambiente de desvanecimento Rayleigh iid (independente e distribuído de forma idêntica). Em seguida, é apresentado um método de aproximação dessas distribuições marginais: Mostramos que a teoria da diversidade espacial SIMO usando combinação de razão máxima (MRC) é aplicável à aproximação de distribuições estatísticas de todos os autovalores em sistemas MIMO com o mesmo número de ramos de diversidade. A aproximação derivada possui uma forma monomial adequada para o cálculo de diversas medidas de desempenho utilizadas em sistemas MIMO. Através de simulações computacionais, a eficácia do método proposto é demonstrada.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Tetsuki TANIGUCHI, Shen SHA, Yoshio KARASAWA, "Analysis and Approximation of Statistical Distribution of Eigenvalues in i.i.d. MIMO Channels under Rayleigh Fading" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 10, pp. 2808-2817, October 2008, doi: 10.1093/ietfec/e91-a.10.2808.
Abstract: In multiple input multiple output (MIMO) communication systems, eigenvalues of channel correlation matrices play an essential role for the performance analysis, and particularly the investigation about their behavior under time-variant environment ruled by a certain statistics is an important problem. This paper first gives the theoretical expressions for the marginal distributions of all the ordered eigenvalues of MIMO correlation matrices under i.i.d. (independent and identically distributed) Rayleigh fading environment. Then, an approximation method of those marginal distributions is presented: We show that the theory of SIMO space diversity using maximal ratio combining (MRC) is applicable to the approximation of statistical distributions of all eigenvalues in MIMO systems with the same number of diversity branches. The derived approximation has a monomial form suitable for the calculation of various performance measures utilized in MIMO systems. Through computer simulations, the effectiveness of the proposed method is demonstrated.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.10.2808/_p
Copiar
@ARTICLE{e91-a_10_2808,
author={Tetsuki TANIGUCHI, Shen SHA, Yoshio KARASAWA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Analysis and Approximation of Statistical Distribution of Eigenvalues in i.i.d. MIMO Channels under Rayleigh Fading},
year={2008},
volume={E91-A},
number={10},
pages={2808-2817},
abstract={In multiple input multiple output (MIMO) communication systems, eigenvalues of channel correlation matrices play an essential role for the performance analysis, and particularly the investigation about their behavior under time-variant environment ruled by a certain statistics is an important problem. This paper first gives the theoretical expressions for the marginal distributions of all the ordered eigenvalues of MIMO correlation matrices under i.i.d. (independent and identically distributed) Rayleigh fading environment. Then, an approximation method of those marginal distributions is presented: We show that the theory of SIMO space diversity using maximal ratio combining (MRC) is applicable to the approximation of statistical distributions of all eigenvalues in MIMO systems with the same number of diversity branches. The derived approximation has a monomial form suitable for the calculation of various performance measures utilized in MIMO systems. Through computer simulations, the effectiveness of the proposed method is demonstrated.},
keywords={},
doi={10.1093/ietfec/e91-a.10.2808},
ISSN={1745-1337},
month={October},}
Copiar
TY - JOUR
TI - Analysis and Approximation of Statistical Distribution of Eigenvalues in i.i.d. MIMO Channels under Rayleigh Fading
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2808
EP - 2817
AU - Tetsuki TANIGUCHI
AU - Shen SHA
AU - Yoshio KARASAWA
PY - 2008
DO - 10.1093/ietfec/e91-a.10.2808
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2008
AB - In multiple input multiple output (MIMO) communication systems, eigenvalues of channel correlation matrices play an essential role for the performance analysis, and particularly the investigation about their behavior under time-variant environment ruled by a certain statistics is an important problem. This paper first gives the theoretical expressions for the marginal distributions of all the ordered eigenvalues of MIMO correlation matrices under i.i.d. (independent and identically distributed) Rayleigh fading environment. Then, an approximation method of those marginal distributions is presented: We show that the theory of SIMO space diversity using maximal ratio combining (MRC) is applicable to the approximation of statistical distributions of all eigenvalues in MIMO systems with the same number of diversity branches. The derived approximation has a monomial form suitable for the calculation of various performance measures utilized in MIMO systems. Through computer simulations, the effectiveness of the proposed method is demonstrated.
ER -