The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Uma função de alçapão unidirecional é uma versão estendida de uma permutação de via zero. Uma permutação zero foi introduzida pela primeira vez por Niemi-Renvall em Asiacrypt'94. Neste artigo definimos a classe de funções chamada funções de jeito nenhum. Esta é uma versão estendida de uma permutação zero. Intuitivamente, uma função f não há como se, sem alçapão, tanto a computação f e computação f-1 são difíceis. Li-Chida-Shizuya definiu a noção de um sem chance função, que é uma versão de segurança comprovável de uma permutação de via zero. Eles também deram um exemplo de uma função impossível, tal que a computação f e f-1 está provado ser tão difícil quanto quebrar o esquema de troca de chaves Diffie-Hellman. Redefinimos a noção de um alçapão de jeito nenhum funcionam de forma mais preciosa, classificam as funções de não via pela propriedade do alçapão: alçapão comum, separado e semi-separado de nenhuma via, fornecem um método para construir funções de alçapão de via única a partir de funções de alçapão unidirecionais e também dão um exemplo de funções de alçapão sem sentido.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Eikoh CHIDA, Motoji OHMORI, Hiroki SHIZUYA, "A Way of Making Trapdoor One-Way Functions Trapdoor No-Way" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 1, pp. 151-156, January 2001, doi: .
Abstract: A trapdoor one-way function is an extended version of a zero-way permutation. A zero-way permutation was first introduced by Niemi-Renvall in Asiacrypt'94. In this paper we define the class of functions called no-way functions. This is an extended version of a zero-way permutation. Intuitively, a function f is no-way if, without trapdoor, both computing f and computing f-1 are hard. Li-Chida-Shizuya defined the notion of a no-way function, which is a provable-security version of a zero-way permutation. They also gave an example of a no-way function such that computing f and f-1 is proven to be as hard as breaking the Diffie-Hellman key exchange scheme. We redefine the notion of a trapdoor no-way function more preciously, classify no-way functions by the property of the trapdoor: common, separated and semi-separated trapdoor no-way, give a method for constructing trapdoor no-way functions from trapdoor one-way functions, and also give an example of trapdoor no-way functions.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_1_151/_p
Copiar
@ARTICLE{e84-a_1_151,
author={Eikoh CHIDA, Motoji OHMORI, Hiroki SHIZUYA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Way of Making Trapdoor One-Way Functions Trapdoor No-Way},
year={2001},
volume={E84-A},
number={1},
pages={151-156},
abstract={A trapdoor one-way function is an extended version of a zero-way permutation. A zero-way permutation was first introduced by Niemi-Renvall in Asiacrypt'94. In this paper we define the class of functions called no-way functions. This is an extended version of a zero-way permutation. Intuitively, a function f is no-way if, without trapdoor, both computing f and computing f-1 are hard. Li-Chida-Shizuya defined the notion of a no-way function, which is a provable-security version of a zero-way permutation. They also gave an example of a no-way function such that computing f and f-1 is proven to be as hard as breaking the Diffie-Hellman key exchange scheme. We redefine the notion of a trapdoor no-way function more preciously, classify no-way functions by the property of the trapdoor: common, separated and semi-separated trapdoor no-way, give a method for constructing trapdoor no-way functions from trapdoor one-way functions, and also give an example of trapdoor no-way functions.},
keywords={},
doi={},
ISSN={},
month={January},}
Copiar
TY - JOUR
TI - A Way of Making Trapdoor One-Way Functions Trapdoor No-Way
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 151
EP - 156
AU - Eikoh CHIDA
AU - Motoji OHMORI
AU - Hiroki SHIZUYA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2001
AB - A trapdoor one-way function is an extended version of a zero-way permutation. A zero-way permutation was first introduced by Niemi-Renvall in Asiacrypt'94. In this paper we define the class of functions called no-way functions. This is an extended version of a zero-way permutation. Intuitively, a function f is no-way if, without trapdoor, both computing f and computing f-1 are hard. Li-Chida-Shizuya defined the notion of a no-way function, which is a provable-security version of a zero-way permutation. They also gave an example of a no-way function such that computing f and f-1 is proven to be as hard as breaking the Diffie-Hellman key exchange scheme. We redefine the notion of a trapdoor no-way function more preciously, classify no-way functions by the property of the trapdoor: common, separated and semi-separated trapdoor no-way, give a method for constructing trapdoor no-way functions from trapdoor one-way functions, and also give an example of trapdoor no-way functions.
ER -