The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Estudamos a estratégia de transmissão ideal de um sistema de comunicação de múltiplas entradas e múltiplas saídas (MIMO) com feedback de covariância. Assumimos que o receptor possui informações perfeitas sobre o estado do canal, enquanto o transmissor conhece apenas a matriz de covariância do canal. Consideramos o modelo de transmissão downlink comum onde a estação base está desobstruída enquanto a estação móvel está cercada por um espalhador local. Portanto, a matriz do canal é modelada com entradas aleatórias complexas gaussianas com linhas independentes distribuídas de forma idêntica e colunas correlacionadas. Para este cenário de transmissão são conhecidos os autovetores de capacidade de alcance da matriz de covariância de transmissão. A capacidade de atingir autovalores não pode ser calculada facilmente. Analisamos a estratégia de transmissão ótima em função da potência de transmissão. Um sistema MIMO usando apenas um autovalor realiza beamforming. Derivamos uma condição necessária e suficiente para quando a formação de feixe atinge a capacidade. Os resultados teóricos são ilustrados por simulações numéricas.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Holger BOCHE, Eduard JORSWIECK, "On the Optimality-Range of Beamforming for MIMO Systems with Covariance Feedback" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 11, pp. 2521-2528, November 2002, doi: .
Abstract: We study the optimal transmission strategy of a multiple-input multiple-output (MIMO) communication system with covariance feedback. We assume that the receiver has perfect channel state information while the transmitter knows only the channel covariance matrix. We consider the common downlink transmission model where the base station is un-obstructed while the mobile station is surrounded by local scatterer. Therefore the channel matrix is modeled with Gaussian complex random entries with independent identically distributed rows and correlated columns. For this transmission scenario the capacity achieving eigenvectors of the transmit covariance matrix are known. The capacity achieving eigenvalues can not be computed easily. We analyze the optimal transmission strategy as a function of the transmit power. A MIMO system using only one eigenvalue performs beamforming. We derive a necessary and sufficient condition for when beamforming achieves capacity. The theoretical results are illustrated by numerical simulations.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_11_2521/_p
Copiar
@ARTICLE{e85-a_11_2521,
author={Holger BOCHE, Eduard JORSWIECK, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On the Optimality-Range of Beamforming for MIMO Systems with Covariance Feedback},
year={2002},
volume={E85-A},
number={11},
pages={2521-2528},
abstract={We study the optimal transmission strategy of a multiple-input multiple-output (MIMO) communication system with covariance feedback. We assume that the receiver has perfect channel state information while the transmitter knows only the channel covariance matrix. We consider the common downlink transmission model where the base station is un-obstructed while the mobile station is surrounded by local scatterer. Therefore the channel matrix is modeled with Gaussian complex random entries with independent identically distributed rows and correlated columns. For this transmission scenario the capacity achieving eigenvectors of the transmit covariance matrix are known. The capacity achieving eigenvalues can not be computed easily. We analyze the optimal transmission strategy as a function of the transmit power. A MIMO system using only one eigenvalue performs beamforming. We derive a necessary and sufficient condition for when beamforming achieves capacity. The theoretical results are illustrated by numerical simulations.},
keywords={},
doi={},
ISSN={},
month={November},}
Copiar
TY - JOUR
TI - On the Optimality-Range of Beamforming for MIMO Systems with Covariance Feedback
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2521
EP - 2528
AU - Holger BOCHE
AU - Eduard JORSWIECK
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2002
AB - We study the optimal transmission strategy of a multiple-input multiple-output (MIMO) communication system with covariance feedback. We assume that the receiver has perfect channel state information while the transmitter knows only the channel covariance matrix. We consider the common downlink transmission model where the base station is un-obstructed while the mobile station is surrounded by local scatterer. Therefore the channel matrix is modeled with Gaussian complex random entries with independent identically distributed rows and correlated columns. For this transmission scenario the capacity achieving eigenvectors of the transmit covariance matrix are known. The capacity achieving eigenvalues can not be computed easily. We analyze the optimal transmission strategy as a function of the transmit power. A MIMO system using only one eigenvalue performs beamforming. We derive a necessary and sufficient condition for when beamforming achieves capacity. The theoretical results are illustrated by numerical simulations.
ER -