The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Mostramos um método para determinar uma Árvore Mínima de Steiner (SMT) e uma condição necessária e suficiente para que uma SMT seja uma árvore de Steiner completa para três pontos dados em
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Michiyoshi HAYASE, "Steiner Trees on Sets of Three Points in -Geometry ( =3m)" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 8, pp. 1946-1955, August 2002, doi: .
Abstract: We show a method to determine a Steiner Minimum Tree (SMT) and a necessary and sufficient condition that an SMT is a full Steiner tree for three given points in
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_8_1946/_p
Copiar
@ARTICLE{e85-a_8_1946,
author={Michiyoshi HAYASE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Steiner Trees on Sets of Three Points in -Geometry ( =3m)},
year={2002},
volume={E85-A},
number={8},
pages={1946-1955},
abstract={We show a method to determine a Steiner Minimum Tree (SMT) and a necessary and sufficient condition that an SMT is a full Steiner tree for three given points in
keywords={},
doi={},
ISSN={},
month={August},}
Copiar
TY - JOUR
TI - Steiner Trees on Sets of Three Points in -Geometry ( =3m)
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1946
EP - 1955
AU - Michiyoshi HAYASE
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 8
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - August 2002
AB - We show a method to determine a Steiner Minimum Tree (SMT) and a necessary and sufficient condition that an SMT is a full Steiner tree for three given points in
ER -