The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Neste artigo, apresentamos a noção de um esquema de criptografia funcional de múltiplas entradas baseado em token (MIFE baseado em token) - uma noção destinada a fornecer aos criptografadores um mecanismo para controlar a descriptografia de mensagens criptografadas, estendendo os algoritmos de criptografia e descriptografia para usar tokens adicionalmente. A ideia básica é que um descriptografador deve conter um token de descriptografia apropriado, além de sua chave secreta, para poder descriptografar. Este tipo de esquema pode abordar preocupações de segurança potencialmente decorrentes de aplicações de criptografia funcional destinadas a resolver o problema da análise de dados com preservação da privacidade. Em primeiro lugar, formalizamos o MIFE baseado em token e, em seguida, fornecemos dois esquemas básicos; ambos são baseados em um esquema MIFE comum, mas o primeiro utiliza adicionalmente um esquema de criptografia de chave pública, enquanto o segundo utiliza uma função pseudoaleatória (PRF). Por último, estendemos a última construção para permitir que os tokens de descriptografia sejam restritos a um conjunto específico de criptografias, mesmo que todas as criptografias tenham sido feitas usando o mesmo token de criptografia. Isto é conseguido usando um PRF restrito.
Nuttapong ATTRAPADUNG
National Institute of Advanced Industrial Science and Technology (AIST)
Goichiro HANAOKA
National Institute of Advanced Industrial Science and Technology (AIST)
Takato HIRANO
Mitsubishi Electric Corporation
Yutaka KAWAI
Mitsubishi Electric Corporation
Yoshihiro KOSEKI
Mitsubishi Electric Corporation
Jacob C. N. SCHULDT
National Institute of Advanced Industrial Science and Technology (AIST)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Nuttapong ATTRAPADUNG, Goichiro HANAOKA, Takato HIRANO, Yutaka KAWAI, Yoshihiro KOSEKI, Jacob C. N. SCHULDT, "Multi-Input Functional Encryption with Controlled Decryption" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 7, pp. 968-978, July 2021, doi: 10.1587/transfun.2020EAP1074.
Abstract: In this paper, we put forward the notion of a token-based multi-input functional encryption (token-based MIFE) scheme - a notion intended to give encryptors a mechanism to control the decryption of encrypted messages, by extending the encryption and decryption algorithms to additionally use tokens. The basic idea is that a decryptor must hold an appropriate decryption token in addition to his secrete key, to be able to decrypt. This type of scheme can address security concerns potentially arising in applications of functional encryption aimed at addressing the problem of privacy preserving data analysis. We firstly formalize token-based MIFE, and then provide two basic schemes; both are based on an ordinary MIFE scheme, but the first additionally makes use of a public key encryption scheme, whereas the second makes use of a pseudorandom function (PRF). Lastly, we extend the latter construction to allow decryption tokens to be restricted to specified set of encryptions, even if all encryptions have been done using the same encryption token. This is achieved by using a constrained PRF.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020EAP1074/_p
Copiar
@ARTICLE{e104-a_7_968,
author={Nuttapong ATTRAPADUNG, Goichiro HANAOKA, Takato HIRANO, Yutaka KAWAI, Yoshihiro KOSEKI, Jacob C. N. SCHULDT, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Multi-Input Functional Encryption with Controlled Decryption},
year={2021},
volume={E104-A},
number={7},
pages={968-978},
abstract={In this paper, we put forward the notion of a token-based multi-input functional encryption (token-based MIFE) scheme - a notion intended to give encryptors a mechanism to control the decryption of encrypted messages, by extending the encryption and decryption algorithms to additionally use tokens. The basic idea is that a decryptor must hold an appropriate decryption token in addition to his secrete key, to be able to decrypt. This type of scheme can address security concerns potentially arising in applications of functional encryption aimed at addressing the problem of privacy preserving data analysis. We firstly formalize token-based MIFE, and then provide two basic schemes; both are based on an ordinary MIFE scheme, but the first additionally makes use of a public key encryption scheme, whereas the second makes use of a pseudorandom function (PRF). Lastly, we extend the latter construction to allow decryption tokens to be restricted to specified set of encryptions, even if all encryptions have been done using the same encryption token. This is achieved by using a constrained PRF.},
keywords={},
doi={10.1587/transfun.2020EAP1074},
ISSN={1745-1337},
month={July},}
Copiar
TY - JOUR
TI - Multi-Input Functional Encryption with Controlled Decryption
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 968
EP - 978
AU - Nuttapong ATTRAPADUNG
AU - Goichiro HANAOKA
AU - Takato HIRANO
AU - Yutaka KAWAI
AU - Yoshihiro KOSEKI
AU - Jacob C. N. SCHULDT
PY - 2021
DO - 10.1587/transfun.2020EAP1074
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2021
AB - In this paper, we put forward the notion of a token-based multi-input functional encryption (token-based MIFE) scheme - a notion intended to give encryptors a mechanism to control the decryption of encrypted messages, by extending the encryption and decryption algorithms to additionally use tokens. The basic idea is that a decryptor must hold an appropriate decryption token in addition to his secrete key, to be able to decrypt. This type of scheme can address security concerns potentially arising in applications of functional encryption aimed at addressing the problem of privacy preserving data analysis. We firstly formalize token-based MIFE, and then provide two basic schemes; both are based on an ordinary MIFE scheme, but the first additionally makes use of a public key encryption scheme, whereas the second makes use of a pseudorandom function (PRF). Lastly, we extend the latter construction to allow decryption tokens to be restricted to specified set of encryptions, even if all encryptions have been done using the same encryption token. This is achieved by using a constrained PRF.
ER -