The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Esta carta trata de conjuntos incorrigíveis de códigos lineares binários. Para um determinado código linear binário C, representamos o número de conjuntos incorrigíveis de tamanho até ⌈3/2d - 1⌉ usando o enumerador de peso de C, Onde d é a distância mínima de C. Além disso, determinamos o conjunto incorrigível de enumeradores de códigos binários de Golay G23 e G24 através de métodos combinatórios.
Lingjun KONG
Jinling Institute of Technology
Haiyang LIU
Institute of Microelectronics of Chinese Academy of Sciences
Lianrong MA
Tsinghua University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Lingjun KONG, Haiyang LIU, Lianrong MA, "More on Incorrigible Sets of Binary Linear Codes" in IEICE TRANSACTIONS on Fundamentals,
vol. E106-A, no. 5, pp. 863-867, May 2023, doi: 10.1587/transfun.2022EAL2054.
Abstract: This letter is concerned with incorrigible sets of binary linear codes. For a given binary linear code C, we represent the numbers of incorrigible sets of size up to ⌈3/2d - 1⌉ using the weight enumerator of C, where d is the minimum distance of C. In addition, we determine the incorrigible set enumerators of binary Golay codes G23 and G24 through combinatorial methods.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2022EAL2054/_p
Copiar
@ARTICLE{e106-a_5_863,
author={Lingjun KONG, Haiyang LIU, Lianrong MA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={More on Incorrigible Sets of Binary Linear Codes},
year={2023},
volume={E106-A},
number={5},
pages={863-867},
abstract={This letter is concerned with incorrigible sets of binary linear codes. For a given binary linear code C, we represent the numbers of incorrigible sets of size up to ⌈3/2d - 1⌉ using the weight enumerator of C, where d is the minimum distance of C. In addition, we determine the incorrigible set enumerators of binary Golay codes G23 and G24 through combinatorial methods.},
keywords={},
doi={10.1587/transfun.2022EAL2054},
ISSN={1745-1337},
month={May},}
Copiar
TY - JOUR
TI - More on Incorrigible Sets of Binary Linear Codes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 863
EP - 867
AU - Lingjun KONG
AU - Haiyang LIU
AU - Lianrong MA
PY - 2023
DO - 10.1587/transfun.2022EAL2054
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E106-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2023
AB - This letter is concerned with incorrigible sets of binary linear codes. For a given binary linear code C, we represent the numbers of incorrigible sets of size up to ⌈3/2d - 1⌉ using the weight enumerator of C, where d is the minimum distance of C. In addition, we determine the incorrigible set enumerators of binary Golay codes G23 and G24 through combinatorial methods.
ER -