The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Neste artigo, estudamos as propriedades do indicador de soma de quadrados de funções booleanas vetoriais. Em primeiro lugar, fornecemos o limite superior de $sum_{uin mathbb{F}_2^n,vin mathbb{F}_2^m}mathcal{W}_F^3(u,v)$. Em segundo lugar, com base na transformada de Walsh-Hadamard, damos uma construção secundária de funções curvadas vetoriais. Além disso, três tipos de indicadores de soma de quadrados de funções booleanas vetoriais são definidos pela função de autocorrelação e os limites inferior e superior dos indicadores de soma de quadrados são derivados. Por fim, estudamos os indicadores de soma de quadrados em relação a diversas relações de equivalência e obtemos o indicador de soma de quadrados que possui as melhores propriedades criptográficas.
Zeyao LI
Huaibei Normal University
Niu JIANG
Huaibei Normal University
Zepeng ZHUO
Huaibei Normal University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Zeyao LI, Niu JIANG, Zepeng ZHUO, "Further Results on Autocorrelation of Vectorial Boolean Functions" in IEICE TRANSACTIONS on Fundamentals,
vol. E106-A, no. 10, pp. 1305-1310, October 2023, doi: 10.1587/transfun.2022EAP1096.
Abstract: In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $sum_{uin mathbb{F}_2^n,vin mathbb{F}_2^m}mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vectorial bent functions. Further, three kinds of sum-of-squares indicators of vectorial Boolean functions are defined by autocorrelation function and the lower and upper bounds of the sum-of-squares indicators are derived. Finally, we study the sum-of-squares indicators with respect to several equivalence relations, and get the sum-of-squares indicator which have the best cryptographic properties.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2022EAP1096/_p
Copiar
@ARTICLE{e106-a_10_1305,
author={Zeyao LI, Niu JIANG, Zepeng ZHUO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Further Results on Autocorrelation of Vectorial Boolean Functions},
year={2023},
volume={E106-A},
number={10},
pages={1305-1310},
abstract={In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $sum_{uin mathbb{F}_2^n,vin mathbb{F}_2^m}mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vectorial bent functions. Further, three kinds of sum-of-squares indicators of vectorial Boolean functions are defined by autocorrelation function and the lower and upper bounds of the sum-of-squares indicators are derived. Finally, we study the sum-of-squares indicators with respect to several equivalence relations, and get the sum-of-squares indicator which have the best cryptographic properties.},
keywords={},
doi={10.1587/transfun.2022EAP1096},
ISSN={1745-1337},
month={October},}
Copiar
TY - JOUR
TI - Further Results on Autocorrelation of Vectorial Boolean Functions
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1305
EP - 1310
AU - Zeyao LI
AU - Niu JIANG
AU - Zepeng ZHUO
PY - 2023
DO - 10.1587/transfun.2022EAP1096
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E106-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2023
AB - In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $sum_{uin mathbb{F}_2^n,vin mathbb{F}_2^m}mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vectorial bent functions. Further, three kinds of sum-of-squares indicators of vectorial Boolean functions are defined by autocorrelation function and the lower and upper bounds of the sum-of-squares indicators are derived. Finally, we study the sum-of-squares indicators with respect to several equivalence relations, and get the sum-of-squares indicator which have the best cryptographic properties.
ER -