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Joint DOA and DOD Estimation Using KR-MUSIC for Overloaded
Target in Bistatic MIMO Radars

Chih-Chang SHEN†a), Member and Jia-Sheng LI†, Nonmember

SUMMARY This letter deals with the joint direction of arrival and
direction of departure estimation problem for overloaded target in bistatic
multiple-input multiple-output radar system. In order to achieve the purpose
of effective estimation, the presented Khatri-Rao (KR) MUSIC estimator
with the ability to handle overloaded targets mainly combines the subspace
characteristics of the target reflected wave signal and the KR product based
on the array response. This letter also presents a computationally efficient
KR noise subspace projection matrix estimation technique to reduce the
computational load due to perform high-dimensional singular value de-
composition. Finally, the effectiveness of the proposed method is verified
by computer simulation.
key words: bistatic radar, overload target, angle estimation, Khatri-Rao
product, singular value decomposition

1. Introduction

In recent years, the emerging multiple-input multiple-output
(MIMO) radar technology has attracted immense interest in
the radar industry [1]. In contrast to conventional bistatic
radars, MIMO radars can implement angle estimation of the
direction of arrival (DOA) and direction of departure (DOD)
of multiple targets with asynchronous receiving and trans-
mitting ends. Some adaptive technologies are applied in an-
gle estimation ofMIMO radar [2]–[7]. The two-dimensional
(2D)minimumvariance distortionless response (MVDR) [2]
and multiple signal classification (MUSIC) [3] can automat-
ically discern the 2D spatial angles problem at the receiver of
theMIMO radar. In addition, if the targets are independently
distributed, the uncorrelated reflection coefficients of the tar-
gets can be used to detect up to one less than the product of
the numbers of receiving and transmitting antenna array ele-
ments. To reduce the computational load, the ESPRIT-root-
MUSIC [4] technique used the ESPRIT and root-MUSIC
approaches to estimate the DOA and DOD, respectively.
Based on low-rank matrix reconstruction theory, a study [5]
proposed amethod different from the conventional vectoriza-
tion method that used virtual sensor interpolation to process
coprime arrays and obtain a uniform linear array (ULA) for
generating covariance matrices. The scanning of bistatic
radars can reach higher degrees of freedom compared with
conventional radars, and these degrees of freedom can be
used to improve the analytic abilities of angle estimation and
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overcome cluttering; however, if the number of targets to
be detected exceeds that of the maximum analyzable targets
(i.e., overloading occurs) [6], the estimation performance of
the target direction and angle would largely decline, and the
target would become undistinguishable. Thus, developing a
method of implementing direction estimation with favorable
analytic abilities in an environment with overloaded target
numbers is a crucial and challenging research topic.

In this letter, a bistatic MIMO radar was used to process
DOA and DOD estimation problems under the condition of
overloaded target. If the transmitter and receiver arrays of a
bistatic radar system are composed of ULA with M and N
components, respectively, the vector dimension of the overall
system output data is MN × 1. The proposed method mainly
uses the subspace characteristics of the correlation matrix of
target reflection wave signals. The developed method in-
volves the subspace formed by the Khatri-Rao (KR) product
of array responses; thus, it is called the KR subspace ap-
proach. The KR subspace achieves meaningful results by
enabling physically underdetermined DOA and DOD prob-
lems to be physically overdetermined under certain condi-
tions. Although the degrees of freedom of the KR subspace
is (MN)2, a study [7] verified that the KR-MUSIC com-
bining the KR subspace and MUSIC can clearly identify
as many as 2MN − 2 targets, which marks a notable im-
provement over the limit of MN − 1 targets of the MUSIC
[3]. Moreover, to reduce the computational complexity, a
computationally efficient approximate KR (AKR) noise sub-
space projection matrix estimation technique was presented
for KR-MUSIC in this letter. Although it is similar to that
the method which described in [8]. But the method in [8]
is presented to reconstruct the conventional signal subspace
and the noise subspace projectionmatrix by using eigenvalue
decomposition for second order statistics. The KR-MUSIC
uses full-dimensional correlation matrices data to construct
subspaces, whereas the proposed AKR-MUSIC uses partial
dimension vectorization correlation matrices as outputs and
employed the Nyström method [9] to rebuild an AKR signal
subspace and an AKR noise subspace projection matrix to
reduce the computational load of high-dimensional singular
value decomposition (SVD). Consequently, the simulation
results can verify the effectiveness of the proposed method.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



676
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.4 APRIL 2024

2. Problem Formulation

2.1 Signal Model

A narrow-band bistaticMIMO radar system’s transmitter and
receiver arrays comprise ULA with M and N components,
respectively. If all array components are omnidirectional
antennas with unit amplitudes, the distances between trans-
mitter and receiver array components can be represented as
dt and dr , respectively. The transmitting antenna transmits
orthogonal waveforms with identical bandwidths and center
frequencies. In addition, K non-coherent targets were as-
sumed to fall in the far field of the antenna arrays and in the
range bin. The angle between the normal vector of the plane
progressive wave of electromagnetic signals reflected by the
target and the transmitter and receiver antennaarrays of the
bistatic radar system was (θk, φk ), where θk and φk are the
DOA and DOD angles (k = 1,2, · · · ,K) of the kth target in
relation to transmitter and receiver arrays. If K targets exist
in an environment, the output passing the matched filter can
be written as

y(t) = G(θ, φ)s(t) + n(t) (1)

whereG(θ, φ) = [g(θ1, φ1),g(θ2, φ2), · · · ,g(θK , φK )] is a steer-
ing matrix with dimensions MN × K , g(θ, φ) = a(θ) ⊗ b(φ),
and ⊗ represents the Kronecker product. If Q is the number
of transmitted pulse waves and (•)T represents the trans-
pose operation, the receiver antenna array with N × 1 steer-
ing vector is a(θk ) = [1, e j2πdr sin θk /λ, e j2π2dr sin θk /λ, · · · ,
e j2π(N−1)dr sin θk /λ]T , and the transmitter array with M × 1
steering vector is b(φk ) = [1, e j2πdt sinφk /λ, e j2π2dt sinφk /λ,
· · · , e j2π(M−1)dt sinφk /λ]T , where λ is the wavelength. Be-
cause the receiver array receives the echo signals of the tar-
get, the echo signal vector is s(t) = [s1(t), s2(t), · · · , sK (t)]T ,
where sk (t) = βke jω

dk
t , βk represents the sum of reflec-

tion coefficient and path loss determined by the radar cross-
section of the kth target, and ω

dk
represents the Doppler

frequency corresponding to the kth target. n(t) represents
the noise vector; its elements are assumed to have a Gaussian
distribution with zero mean and variance σ2

n .

2.2 KR-MUSIC Estimator

This subsection discusses using the KR-MUSIC [7] to per-
form DOA and DOD estimation for overloaded targets in
bistatic radars. First, if the observation period of the echo
signals is a steady-state process and the number of sam-
ples obtained through frame sampling is Q (Q ≥ MN and
E{|sk (t)|2} = σ2

f k to satisfy statistical requirements), then the
f th local correlation matrix R f = E{y(t)yH (t)} ∈ CMN×MN ,
∀t ∈ [( f − 1)Q, f Q − 1], where f = 1,2, · · · ,F and F is
the number of frames. These local correlation matrices can
be estimated according to the time average of the observa-
tion periods. In other words, R̂ f = (1/Q)

∑ f Q−1
t=( f −1)Q y(t)yH (t).

Then, R f is given by

R f = G(θ, φ)D f GH (θ, φ) + σ2
nIMN (2)

where the correlation matrix of the reflection wave sig-
nal source of the f th frame D f = diag{d f } ∈ R

K×K , and
d f = [σ

2
f 1, σ

2
f 2, · · · , σ

2
f K ]

T . If many local correlation matri-
cesR1,R2, · · · ,RF are available, the DOA and DOD {θk, φk }

of targets can be estimated based on {R1,R2, · · · ,RF } with-
out knowing the correlation matrices (D1,D2, · · · ,DF ) of
local signal sources or the spatial noise covariance matrix
σ2

nIMN .
First,R f is vectorizedwith y f , vec{R f } = C(θ, φ)d f+

vec{σ2
nIMN }, where C(θ, φ) = G∗(θ, φ) � G(θ, φ) ∈

C(MN )2×K , vec{•} represents the vectorization of the ma-
trix, and the symbol � represents the KR product. Then,
by stacking [y1,y2, · · · ,yF ] , Y, the vectorized correlation
matrix Y can be expressed as follows:

Y = C(θ, φ)ΨT + vec{σ2
nIMN }1T

F (3)

where C(θ, φ) = [c(θ1, φ1),c(θ2, φ2), · · · ,c(θK , φK )], 1F =

[1, · · · ,1]T , Ψ = [d1,d2, · · · ,dF ]
T , and d f =

[σ2
f 1, σ

2
f 2, · · · , σ

2
f K ]

T with f = 1,2, · · · ,F. C(θ, φ) is a virtual
array response matrix, and d f is a signal source vector. The
virtual array dimension is (MN)2. If MN > 1, the virtual ar-
ray dimensions are greater than the actual array dimensions.
If the number of array elements is lower than the number of
targets, the degrees of freedom can be effectively increased
to enable handling greater numbers of targets, namely iden-
tification signals in overloaded systems. Moreover, each row
vector d f on matrix Ψ describes the power of the reflec-
tion signal source relative to the frames or the variation of
the long-term power distribution over time. In practice, the
power distribution of the reflection wave signal source may
differ in the time frame; thus, Ψ can maintain full rank.

The SVD of Y is defined as follows:

Y =
[

Us Un

] [
Σs 0
0 0

] [
VH

s

VH
n

]
(4)

where Us = [u1, u2, · · · , uK ] ∈ C
(MN )2×K , and Vs ∈ C

F×K ,
respectively, represent the left and right singular matrices
of nonzero singular values. Un ∈ C

(MN )2×(M2N2−K) and
Vn ∈ C

F×(M2N2−K) are left and right singular matrices, re-
spectively, associated with these zero singular values. The
diagonal of the diagonal matrix Σs = diag{[σ1, σ2, · · · ,
σK ]} ∈ R

K×K contains nonzero singular values, where σk

is singular value with k = 1,2, · · · ,K . The target reflection
wave signals satisfyUH

n [G∗(θk , φk )�G(θk , φk ) = UH
n [g∗(θk ,

φk ) ⊗ g(θk , φk )] = 0 for k = 1,2, · · · ,K . Thus, the KR sub-
space law for DOA and DOD estimation is expressed as
follows:

Find {θ, φ}
such that UH

n c(θ, φ) = 0, {θ, φ} ∈ [−90◦,90◦]
(5)

where c(θ, φ) = g∗(θ, φ) ⊗ g(θ, φ). Similarly to the develop-
ment of the subspace, if {θ, φ} is the real DOA and DOD of
the target, the inference in [7] suggests that (5) is satisfied and
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identifiable when the following two statements are true: the
virtual array response matrix G∗(θ, φ) �G(θ, φ) can generate
full row rank (rank=K) if and only if K ≤ 2MN − 1; the KR
subspace law can be realized by using any real pair of angles
in {θk, φk }, k = 1,2, · · · ,K if and only if K ≤ 2MN − 2. In
particular, under the KR subspace structure, undetermined
DOA and DOD estimation can be conducted.

We can directly apply the KR subspace law of (5) to
develop the KR-MUSIC for DOA and DOD estimation. Due
to the orthogonality of the two subspaces, ‖ UH

n c(θk, φk ) ‖
2=

0, k = 1,2, · · · ,K . The conventional approach to estimate
DOA and DOD concurrently involves the direction-finding
approach involves searching the peak value in the virtual
spectrum. The searching function is given by

PKR−M (θ̂, φ̂) = Max[cH (θ, φ)UnUH
n c(θ, φ)]−1 (6)

where Un is the KR noise subspace derived from (4).
c(θ, φ) = g∗(θ, φ) ⊗ g(θ, φ) is the spatial-domain direction
scanning vector, with the direction angles corresponding to
the peak values being the estimated DOA and DOD.

The KR-MUSIC is expected to enable DOA and DOD
estimation on K ≤ 2MN − 2 targets. Given the received sig-
nal {y(t)}, target number K , frame number F, and the num-
ber of samples Q obtained in each frame, the KR-MUSIC is
implemented as follows:

Step 1. Calculate {R̂ f }
F
f =1.

Step 2. Form Y = [vec{R̂1},vec{R̂2}, · · · ,vec{R̂F }].
Step 3. Extract KR subspaces: Conduct SVD on Y and

obtain Un from U.
Step 4. KR-MUSIC: Calculate spectrum PKR−M(θ, φ) on

{θ, φ} ∈ [−90◦,90◦] and identify angles corre-
sponding to the K peak values of PKR−M(θ, φ),
which are the results of DOA and DOD estima-
tion.

Although this KR subspace technique can handle overloaded
systems, the computational load will increase substantially
if the matrix dimensions is augmented from MN to (MN)2,
particularly when extracting SVD subspace.

3. AKR-MUSIC Estimator

The AKR-MUSIC estimator exploits the Nyström version
to reconstruct the KR noise subspace, and its key point
is using a suitable dimensions Na to achieve the trade-off
between computational complexity and estimation perfor-
mance. First, if the dimensions of the vectorized correlation
matrix Y are (MN)2 × F, data matrix Ỹ with Na × F dimen-
sions represents the output of extracting elements from row
1 to row Na of Y. Then, the SVD of Ỹ can be calculated as
Ỹ = ŨỸ Σ̃Ỹ ṼH

Ỹ , where ŨỸ = [Ũs, Ũn] = [ũ1, ũ2, · · · , ũNa ] is
the matrix formed from the left singular vector with dimen-
sions Na×Na, ṼỸ is the matrix formed from the right singular
vector with dimensions F × F, Σ̃Ỹ ∈ R

Na×F is the singular
value matrix with singular values σ̃i , and square matrices
ŨỸ and ṼỸ are unitary matrices. If Na > K , the subspace
Ũs with is extended from left singular matrix ŨỸ is equiva-

lent to C̃(θ, φ), which represents the extraction of elements
from row 1 to row Na of C(θ, φ). Then, let RỸỸ = ỸỸH

and satisfy RỸỸ ũi = σ̃2
i ũi , i = 1,2, · · · ,Na. To realize the

Nyström approximation, the correlation matrix RYỸ = YỸH

with dimensions (MN)2 × Na is given by

RYỸ = C(θ, φ)DC̃H
(θ, φ) + σ2

nI(MN )2×Na (7)

where I(MN )2×Na is a matrix with (MN)2×Na dimensions and
diagonal elements of 1; the remaining elements are 0. The
principal left singular vector of Y, {u1,u2, · · · ,uK }, has an
approximate vector {>u1,

>u2, · · · ,
>uK } that satisfies RYỸ ũi =

σ̃2
i

>ui . The approximate vector of {u1,u2, · · · ,uK } can be fur-
ther expressed as>ui = (1/σ̃2

i )RYỸ ũi . If {>u1,
>u2, · · · ,

>uK } rep-
resents the K approximate principal singular vectors (eigen-
vectors) of RYY , then the AKR signal subspace (defined as
>Us) can be expressed as >Us = [

>u1,
>u2, · · · ,

>uK ]. Because
of the orthogonality of singular vectors, >Us

>U
H

s +
>Un

>U
H

n =

I(MN )2 . According to unitary theorem [3], the orthogonal
projection matrix of the AKR noise subspaces can be ex-
pressed as >Un

>U
H

n = I(MN )2 −
>Us

>U
H

s . The projection matrix
of the AKR noise subspace is extracted using the following
steps:
Step 1. ObtainY and select an appropriate Na that satisfies

Na > K to construct Ỹ.
Step 2. Determine {ũi, σ̃i}

Na
i=1 by conducting SVD on Ỹ.

Step 3. Calculate RYỸ = YỸH .
Step 4. Calculate>ui = (1/σ̃2

i )RYỸ ũi and use the singular
vectors corresponding to the firstK largest singular
values to construct >Us = [

>u1,
>u2, · · · ,

>uK ].
Step 5. Calculate >Un

>U
H

n = I(MN )2 −
>Us

>U
H

s .
Finally, Step 3 of the KR-MUSIC implementation steps

is replaced with the steps of extracting the projection of AKR
noise subspaces, and the function used in Step 4 of the KR-
MUSIC is replaced with the following spectral searching
function:

PAKR−M(θ̂, φ̂) = Max[cH (θ, φ)
>Un

>U
H

n c(θ, φ)]−1 (8)

Then, the obtained AKR-MUSIC can be used to efficiently
estimate DOA and DOD.

4. Computational Complexity Analysis

In this section, the number of complex multiplications (CM)
of the KR-MUSIC and AKR-MUSIC are evaluated. Assum-
ing K targets, N receiving antennas, M transmitting anten-
nas, and F frames. For each test, the computational complex-
ities of calculating SVD for an (MN)2×F correlation matrix
requires 12(MN)6 CM [10]. In addition, the computational
complexities of calculating {R̂ f }

F
f =1 for an MN × Q matrix

require F[(MN)2Q] CM. Let Fθ and Fφ be the number of
searches for θ and φ, respectively. The searching function
of the KR-MUSIC and AKR-MUSIC are (6) and (8), re-
spectively. Hence, the required CM of the KR-MUSIC and
AKR-MUSIC are FθFφ{2(MN)2[(MN)2 −K]+ (MN)2} and
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Table 1 Computational complexity analysis.

FθFφ{(MN)4+(MN)2}, respectively. In particular, theAKR-
MUSIC calculates the SVD of the matrix Ỹ of the Na × F
dimension and requires 12N3

a CM. The matrix RYỸ = YỸH

and the AKR signal subspace>Us = [
>u1,

>u2, · · · ,
>uK ] are com-

puted, which require (MN)2FNa and K[2(MN)2Na] CM,
respectively. Calculating the projection matrix >Un

>U
H

n =

I(MN )2 −
>Us

>U
H

s of the AKR noise subspace requires (MN)4K
CM. Briefly, the required CM are listed in Table 1.

5. Simulation Results

The results of computer simulations were used to compare
the performance of the proposedAKR-MUSIC,KR-MUSIC,
MVDR [2], MUSIC [3], and ESPRIT-root-MUSIC [4] es-
timators. For all simulations, the number of uncorrelated
aerial targets is K = 9, their DOA and DOD in the bistatic
radars are (θ1, φ1) = (−20◦,−55◦), (θ2, φ2) = (−10◦,35◦),
(θ3, φ3) = (0◦,−25◦), (θ4, φ4) = (10◦,15◦), (θ5, φ5) =

(20◦,−5◦), (θ6, φ6) = (30◦,45◦), (θ7, φ7) = (40◦,−5◦),
(θ8, φ8) = (50◦,25◦), (θ9, φ9) = (60◦,5◦). Unless stated oth-
erwise, the DOA and DOD estimation for non-overloaded
targets yields in M = 5 and N = 3. Notably, the scenario sat-
isfies the non-overloaded target condition of (MN − 1) > K .
For overloaded targets, the DOA and DOD estimation yields
in M = 3 and N = 3, which satisfies the overloaded target
condition of (MN − 1) < K . The snapshot number of each
frame in the KR-MUSIC is fixed at Q = 600, and the frame
number is F = 102. The signal-to-noise ratio (SNR) of tar-
get reflection signal is SNR = 10 log10 E[sk (t)2]/σ2

n. The
MVDR and MUSIC spectral searching grid angle was set
µ = 0.1◦ and the KR-MUSIC and AKR-MUSIC was set to
µ = 1◦. The interval between the antenna components is
half-wavelength, and all array elements are assumed to have
omnidirectional unit gain. The total root mean square error
(TRMSE) of the DOA and DOD estimation of K targets,
TRMSE =

∑
K
k=1[(θ̂k − θk )

2 + (φ̂k − φk )
2]0.5, was adopted as

the performance indicator, and 103 Monte Carlo tests were
performed with various parameter settings.

Figure 1 depicts the performance of the AKR-MUSIC
by revealing the dimension numbers Na of the output received
data arrays with non-overloaded and overloaded targets at
SNR = 15 dB. To support the performance evaluation, the
simulation results use the KR-MUSIC performance as a ref-
erence for comparison. Because approximation was used,
the number of dimensions changed from (MN)2 × (MN)2

to (MN)2 × Na, it clearly indicates that AKR-MUSIC has a
TRMSE of 5×10−3 in Na ≥ 10with both non-overloaded and
overloaded targets. The performance of the AKR-MUSIC is
roughly comparable to that of the KR-MUSIC. Thus, in the

Fig. 1 TRMSE versus number of dimensions.

Fig. 2 TRMSE versus SNR.

following simulation process, Na = 12 was selected for the
AKR-MUSIC to minimize the computational load. Figure 2
presents the comparison of angle estimation performance of
estimators under different SNRs. With non-overloaded tar-
gets, MUSIC, in which an orthogonal relationship exists be-
tween the noise subspace and the incidence steering vector,
had superior estimation performance to the MVDR when
SNR was low. The ESPRIT-root-MUSIC achieves favor-
able estimation performance due to its root-finding approach,
which has no resolution limit. However, this figure reveals
that if SNR ≥ 10 dB, the performance of the AKR-MUSIC
and KR-MUSIC are similar. With overloaded targets, con-
ventional methods have poor estimation performance be-
cause they can handle only MN − 1 targets. By contrast, the
KR-MUSIC and AKR-MUSIC normally despite overload-
ing. Figure 3 presents the TRMSE of DOA and DOD esti-
mationwith various snapshot numbers at SNR = 15 dB to re-
veal the estimator convergence. The proposed AKR-MUSIC
adopts subspace approximation, which leads to slower con-
vergence comparedwith theKR-MUSIC. It not only presents
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Fig. 3 TRMSE versus number of snapshots.

Fig. 4 Computational time versus number of antennas.

improved computational performance, but also achieves fa-
vorable angle estimation performance. Figure 4 presents an
evaluation of the computational complexity using the TIC
and TOC instruction in MATLAB. For each Monte-Carlo
trail, the calculation of CPU time consuming (in seconds)
of each estimator started at the computation of {R̂ f }

F
f =1 and

terminated at the outputting noise subspace or orthogonal
projection matrix. Assume that the number of transmit an-
tennas M is the same as the number of receive antennas N .
The average CPU time is plotted versus number of antennas
(M or N) with Na = {12,30,60}. As the result of Fig. 4, we
can observe that the average CPU time of all AKR-MUSIC
are less than the average CPU time for the KR-MUSIC, par-
ticularly when antenna becomes larger. Again, this figure is
presented to verify the efficiency of the AKR-MUSIC.

6. Conclusion

A joint DOA and DOD estimation method based on the
KR subspaces for bistatic MIMO radars was proposed in
this letter. The method involves implementing SVD on
partial-dimensionally vectorized correlation matrices. The
KR-MUSIC is superior to the conventional estimators for
processing overloaded targets. However, it involves a con-
siderably increased computational load due to the increase of
matrix dimensions from MN to (MN)2. To reduce the com-
putational load while maintaining the advantages in process-
ing overloaded targets, the AKR-MUSIC increases analytic
abilities and increases the computational efficiency for over-
loaded targets. Simulation results verified the effectiveness
of the proposed AKR-MUSIC.
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