The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Neste trabalho propomos uma versão bayesiana do limite de Nagaoka-Hayashi ao estimar uma família paramétrica de estados quânticos. Este limite inferior é uma generalização de um limite recentemente proposto para estimativa pontual para estimativa Bayesiana. Mostramos então que o limite inferior proposto pode ser calculado eficientemente como um problema de programação semidefinido. Como limite inferior, também derivamos uma versão bayesiana do limite do tipo Holevo do limite bayesiano Nagaoka-Hayashi. Por último, provamos que o novo limite inferior é mais estreito do que os limites da derivada logarítmica quântica bayesiana.
Jun SUZUKI
The University of Electro-Communications
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Jun SUZUKI, "Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem" in IEICE TRANSACTIONS on Fundamentals,
vol. E107-A, no. 3, pp. 510-518, March 2024, doi: 10.1587/transfun.2023TAP0014.
Abstract: In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum logarithmic derivative bounds.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2023TAP0014/_p
Copiar
@ARTICLE{e107-a_3_510,
author={Jun SUZUKI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem},
year={2024},
volume={E107-A},
number={3},
pages={510-518},
abstract={In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum logarithmic derivative bounds.},
keywords={},
doi={10.1587/transfun.2023TAP0014},
ISSN={1745-1337},
month={March},}
Copiar
TY - JOUR
TI - Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 510
EP - 518
AU - Jun SUZUKI
PY - 2024
DO - 10.1587/transfun.2023TAP0014
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E107-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2024
AB - In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum logarithmic derivative bounds.
ER -