The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
O k-erro de complexidade linear de uma sequência é um conceito fundamental para avaliar a estabilidade da complexidade linear. Depois de calcular o k-erro de complexidade linear de uma sequência, os bits que causam a redução da complexidade linear também precisam ser determinados. Para sequências binárias com período 2pn, Onde p é um primo ímpar e 2 é um módulo de raiz primitiva p2, apresentamos um algoritmo que calcula o número mínimo k de modo que o k-a complexidade linear do erro não é maior que uma determinada constante c. A sequência de erros correspondente também é obtida.
Zhihua NIU
Shanghai University
Deyu KONG
Shanghai University
Yanli REN
Shanghai University
Xiaoni DU
Northwest Normal University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Zhihua NIU, Deyu KONG, Yanli REN, Xiaoni DU, "Analysis of the k-Error Linear Complexity and Error Sequence for 2pn-Periodic Binary Sequence" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 8, pp. 1197-1203, August 2018, doi: 10.1587/transfun.E101.A.1197.
Abstract: The k-error linear complexity of a sequence is a fundamental concept for assessing the stability of the linear complexity. After computing the k-error linear complexity of a sequence, those bits that cause the linear complexity reduced also need to be determined. For binary sequences with period 2pn, where p is an odd prime and 2 is a primitive root modulo p2, we present an algorithm which computes the minimum number k such that the k-error linear complexity is not greater than a given constant c. The corresponding error sequence is also obtained.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.1197/_p
Copiar
@ARTICLE{e101-a_8_1197,
author={Zhihua NIU, Deyu KONG, Yanli REN, Xiaoni DU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Analysis of the k-Error Linear Complexity and Error Sequence for 2pn-Periodic Binary Sequence},
year={2018},
volume={E101-A},
number={8},
pages={1197-1203},
abstract={The k-error linear complexity of a sequence is a fundamental concept for assessing the stability of the linear complexity. After computing the k-error linear complexity of a sequence, those bits that cause the linear complexity reduced also need to be determined. For binary sequences with period 2pn, where p is an odd prime and 2 is a primitive root modulo p2, we present an algorithm which computes the minimum number k such that the k-error linear complexity is not greater than a given constant c. The corresponding error sequence is also obtained.},
keywords={},
doi={10.1587/transfun.E101.A.1197},
ISSN={1745-1337},
month={August},}
Copiar
TY - JOUR
TI - Analysis of the k-Error Linear Complexity and Error Sequence for 2pn-Periodic Binary Sequence
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1197
EP - 1203
AU - Zhihua NIU
AU - Deyu KONG
AU - Yanli REN
AU - Xiaoni DU
PY - 2018
DO - 10.1587/transfun.E101.A.1197
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 8
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - August 2018
AB - The k-error linear complexity of a sequence is a fundamental concept for assessing the stability of the linear complexity. After computing the k-error linear complexity of a sequence, those bits that cause the linear complexity reduced also need to be determined. For binary sequences with period 2pn, where p is an odd prime and 2 is a primitive root modulo p2, we present an algorithm which computes the minimum number k such that the k-error linear complexity is not greater than a given constant c. The corresponding error sequence is also obtained.
ER -