The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Neste artigo, estudamos códigos cíclicos autoduais de comprimento n sobre o anel R=Z4[u]/u2-1>, onde n é um número inteiro positivo ímpar. Definimos um novo mapa de Gray φ a partir de R para Z42. É um mapa bijetivo e mantém a autodualidade. Além disso, damos as estruturas dos geradores de códigos cíclicos e códigos cíclicos autoduais de comprimento ímpar n sobre o anel R. Como aplicação, alguns códigos autoduplas de comprimento 2n Acima de Z4 são obtidos.
Yun GAO
Nankai University
Jian GAO
Shandong University of Technology
Fang-Wei FU
Nankai University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Yun GAO , Jian GAO, Fang-Wei FU, "Self-Dual Cyclic Codes over Z4[u]/
Abstract: In this paper, we study self-dual cyclic codes of length n over the ring R=Z4[u]/<u2-1>, where n is an odd positive integer. We define a new Gray map φ from R to Z42. It is a bijective map and maintains the self-duality. Furthermore, we give the structures of the generators of cyclic codes and self-dual cyclic codes of odd length n over the ring R. As an application, some self-dual codes of length 2n over Z4 are obtained.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.1724/_p
Copiar
@ARTICLE{e101-a_10_1724,
author={Yun GAO , Jian GAO, Fang-Wei FU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Self-Dual Cyclic Codes over Z4[u]/
year={2018},
volume={E101-A},
number={10},
pages={1724-1729},
abstract={In this paper, we study self-dual cyclic codes of length n over the ring R=Z4[u]/<u2-1>, where n is an odd positive integer. We define a new Gray map φ from R to Z42. It is a bijective map and maintains the self-duality. Furthermore, we give the structures of the generators of cyclic codes and self-dual cyclic codes of odd length n over the ring R. As an application, some self-dual codes of length 2n over Z4 are obtained.},
keywords={},
doi={10.1587/transfun.E101.A.1724},
ISSN={1745-1337},
month={October},}
Copiar
TY - JOUR
TI - Self-Dual Cyclic Codes over Z4[u]/
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1724
EP - 1729
AU - Yun GAO
AU - Jian GAO
AU - Fang-Wei FU
PY - 2018
DO - 10.1587/transfun.E101.A.1724
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2018
AB - In this paper, we study self-dual cyclic codes of length n over the ring R=Z4[u]/<u2-1>, where n is an odd positive integer. We define a new Gray map φ from R to Z42. It is a bijective map and maintains the self-duality. Furthermore, we give the structures of the generators of cyclic codes and self-dual cyclic codes of odd length n over the ring R. As an application, some self-dual codes of length 2n over Z4 are obtained.
ER -