The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Introduzimos um novo tipo de fórmula de raiz quadrada do tipo Montgomery em GF(2m) definido por um trinômio irredutível arbitrário, que é mais eficiente em comparação com a operação clássica de raiz quadrada. Ao escolher fatores de Montgomery adequados para diferentes tipos de trinômios, as complexidades de espaço e tempo de tais cálculos de raiz quadrada correspondem ou superam os melhores resultados. Também é apresentada uma aplicação prática da raiz quadrada do tipo Montgomery no cálculo de inversão.
Yin LI
Xinyang Normal University
Yu ZHANG
Xinyang Normal University
Xiaoli GUO
Xinyang Normal University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Yin LI, Yu ZHANG, Xiaoli GUO, "Fast Montgomery-Like Square Root Computation for All Trinomials" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 1, pp. 307-309, January 2019, doi: 10.1587/transfun.E102.A.307.
Abstract: We introduce a new type of Montgomery-like square root formulae in GF(2m) defined by an arbitrary irreducible trinomial, which is more efficient compared with classic square root operation. By choosing proper Montgomery factors for different kind of trinomials, the space and time complexities of such square root computations match or outperform the best results. A practical application of the Montgomery-like square root in inversion computation is also presented.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.307/_p
Copiar
@ARTICLE{e102-a_1_307,
author={Yin LI, Yu ZHANG, Xiaoli GUO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Fast Montgomery-Like Square Root Computation for All Trinomials},
year={2019},
volume={E102-A},
number={1},
pages={307-309},
abstract={We introduce a new type of Montgomery-like square root formulae in GF(2m) defined by an arbitrary irreducible trinomial, which is more efficient compared with classic square root operation. By choosing proper Montgomery factors for different kind of trinomials, the space and time complexities of such square root computations match or outperform the best results. A practical application of the Montgomery-like square root in inversion computation is also presented.},
keywords={},
doi={10.1587/transfun.E102.A.307},
ISSN={1745-1337},
month={January},}
Copiar
TY - JOUR
TI - Fast Montgomery-Like Square Root Computation for All Trinomials
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 307
EP - 309
AU - Yin LI
AU - Yu ZHANG
AU - Xiaoli GUO
PY - 2019
DO - 10.1587/transfun.E102.A.307
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2019
AB - We introduce a new type of Montgomery-like square root formulae in GF(2m) defined by an arbitrary irreducible trinomial, which is more efficient compared with classic square root operation. By choosing proper Montgomery factors for different kind of trinomials, the space and time complexities of such square root computations match or outperform the best results. A practical application of the Montgomery-like square root in inversion computation is also presented.
ER -