The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Este artigo apresenta um novo método usando algoritmo de otimização multiobjetivo para encontrar automaticamente o melhor solução a partir de um biblioteca de topologia de circuitos analógicos. Em primeiro lugar, este método abstrai a frente de Pareto de cada topologia na biblioteca por simulação SPICE. Então, a frente de Pareto do biblioteca de topologia é abstraído das frentes de Pareto individuais das topologias na biblioteca, seguido pelo teorema que provamos. O melhor solução que é definido como o ponto mais próximo da especificação na frente de Pareto do biblioteca de topologia é então calculado pelas equações derivadas do teorema da colinearidade. Após a busca local usando o método Nelder-Mead mapeia o valor calculado melhor solução apoia o design do espaço variável, o não dominado melhor solução é obtido. Comparando com os métodos tradicionais de otimização usando algoritmos de otimização de objetivo único, este trabalho pode encontrar com eficiência a melhor solução não dominada de múltiplas topologias para especificações diferentes, sem iterações de otimização adicionais demoradas. Os experimentos demonstram que este método é viável e prático em projetos analógicos reais, especialmente para especificações multidimensionais incertas ou variantes.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Yu LIU, Masato YOSHIOKA, Katsumi HOMMA, Toshiyuki SHIBUYA, "Find the 'Best' Solution from Multiple Analog Topologies via Pareto-Optimality" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 12, pp. 3035-3043, December 2009, doi: 10.1587/transfun.E92.A.3035.
Abstract: This paper presents a novel method using multi-objective optimization algorithm to automatically find the best solution from a topology library of analog circuits. Firstly this method abstracts the Pareto-front of each topology in the library by SPICE simulation. Then, the Pareto-front of the topology library is abstracted from the individual Pareto-fronts of topologies in the library followed by the theorem we proved. The best solution which is defined as the nearest point to specification on the Pareto-front of the topology library is then calculated by the equations derived from collinearity theorem. After the local searching using Nelder-Mead method maps the calculated best solution backs to design variable space, the non-dominated best solution is obtained. Comparing to the traditional optimization methods using single-objective optimization algorithms, this work can efficiently find the best non-dominated solution from multiple topologies for different specifications without additional time-consuming optimizing iterations. The experiments demonstrate that this method is feasible and practical in actual analog designs especially for uncertain or variant multi-dimensional specifications.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.3035/_p
Copiar
@ARTICLE{e92-a_12_3035,
author={Yu LIU, Masato YOSHIOKA, Katsumi HOMMA, Toshiyuki SHIBUYA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Find the 'Best' Solution from Multiple Analog Topologies via Pareto-Optimality},
year={2009},
volume={E92-A},
number={12},
pages={3035-3043},
abstract={This paper presents a novel method using multi-objective optimization algorithm to automatically find the best solution from a topology library of analog circuits. Firstly this method abstracts the Pareto-front of each topology in the library by SPICE simulation. Then, the Pareto-front of the topology library is abstracted from the individual Pareto-fronts of topologies in the library followed by the theorem we proved. The best solution which is defined as the nearest point to specification on the Pareto-front of the topology library is then calculated by the equations derived from collinearity theorem. After the local searching using Nelder-Mead method maps the calculated best solution backs to design variable space, the non-dominated best solution is obtained. Comparing to the traditional optimization methods using single-objective optimization algorithms, this work can efficiently find the best non-dominated solution from multiple topologies for different specifications without additional time-consuming optimizing iterations. The experiments demonstrate that this method is feasible and practical in actual analog designs especially for uncertain or variant multi-dimensional specifications.},
keywords={},
doi={10.1587/transfun.E92.A.3035},
ISSN={1745-1337},
month={December},}
Copiar
TY - JOUR
TI - Find the 'Best' Solution from Multiple Analog Topologies via Pareto-Optimality
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 3035
EP - 3043
AU - Yu LIU
AU - Masato YOSHIOKA
AU - Katsumi HOMMA
AU - Toshiyuki SHIBUYA
PY - 2009
DO - 10.1587/transfun.E92.A.3035
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2009
AB - This paper presents a novel method using multi-objective optimization algorithm to automatically find the best solution from a topology library of analog circuits. Firstly this method abstracts the Pareto-front of each topology in the library by SPICE simulation. Then, the Pareto-front of the topology library is abstracted from the individual Pareto-fronts of topologies in the library followed by the theorem we proved. The best solution which is defined as the nearest point to specification on the Pareto-front of the topology library is then calculated by the equations derived from collinearity theorem. After the local searching using Nelder-Mead method maps the calculated best solution backs to design variable space, the non-dominated best solution is obtained. Comparing to the traditional optimization methods using single-objective optimization algorithms, this work can efficiently find the best non-dominated solution from multiple topologies for different specifications without additional time-consuming optimizing iterations. The experiments demonstrate that this method is feasible and practical in actual analog designs especially for uncertain or variant multi-dimensional specifications.
ER -