The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Esta carta propõe soluções de forma fechada para o L2-minimização da sensibilidade de filtros digitais de espaço de estados de segunda ordem com pólos reais. Consideramos dois casos de filtros digitais de segunda ordem: pólos reais distintos e pólos reais múltiplos. No caso de filtros digitais de segunda ordem, podemos expressar o L2-sensibilidade de filtros digitais de segunda ordem por uma combinação linear simples de funções exponenciais e formular o L2-problema de minimização de sensibilidade por uma equação polinomial simples. Como resultado, o mínimo L2-realizações de sensibilidade podem ser sintetizadas resolvendo apenas uma equação polinomial de quarto grau, que pode ser resolvida analiticamente.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Shunsuke YAMAKI, Masahide ABE, Masayuki KAWAMATA, "Closed Form Solutions to L2-Sensitivity Minimization of Second-Order State-Space Digital Filters with Real Poles" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 5, pp. 966-971, May 2010, doi: 10.1587/transfun.E93.A.966.
Abstract: This letter proposes closed form solutions to the L2-sensitivity minimization of second-order state-space digital filters with real poles. We consider two cases of second-order digital filters: distinct real poles and multiple real poles. In case of second-order digital filters, we can express the L2-sensitivity of second-order digital filters by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, the minimum L2-sensitivity realizations can be synthesized by only solving a fourth-degree polynomial equation, which can be analytically solved.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.966/_p
Copiar
@ARTICLE{e93-a_5_966,
author={Shunsuke YAMAKI, Masahide ABE, Masayuki KAWAMATA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Closed Form Solutions to L2-Sensitivity Minimization of Second-Order State-Space Digital Filters with Real Poles},
year={2010},
volume={E93-A},
number={5},
pages={966-971},
abstract={This letter proposes closed form solutions to the L2-sensitivity minimization of second-order state-space digital filters with real poles. We consider two cases of second-order digital filters: distinct real poles and multiple real poles. In case of second-order digital filters, we can express the L2-sensitivity of second-order digital filters by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, the minimum L2-sensitivity realizations can be synthesized by only solving a fourth-degree polynomial equation, which can be analytically solved.},
keywords={},
doi={10.1587/transfun.E93.A.966},
ISSN={1745-1337},
month={May},}
Copiar
TY - JOUR
TI - Closed Form Solutions to L2-Sensitivity Minimization of Second-Order State-Space Digital Filters with Real Poles
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 966
EP - 971
AU - Shunsuke YAMAKI
AU - Masahide ABE
AU - Masayuki KAWAMATA
PY - 2010
DO - 10.1587/transfun.E93.A.966
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E93-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2010
AB - This letter proposes closed form solutions to the L2-sensitivity minimization of second-order state-space digital filters with real poles. We consider two cases of second-order digital filters: distinct real poles and multiple real poles. In case of second-order digital filters, we can express the L2-sensitivity of second-order digital filters by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, the minimum L2-sensitivity realizations can be synthesized by only solving a fourth-degree polynomial equation, which can be analytically solved.
ER -