The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Este artigo apresenta um sistema automático e multi-instrumental de observação de queda de neve e propõe técnicas que podem ser utilizadas na estimativa das características da queda de neve. Os instrumentos utilizados neste estudo incluem dois radares de microondas, um lidar óptico, um sistema de imagem baseado em câmera CCD e balanças elétricas de alta precisão para dados de referência. A ênfase tem sido na obtenção de boa resolução temporal e precisão de sincronização de conjuntos de dados separados. Na maioria das pesquisas realizadas até agora, este não foi o ponto principal, ou porque apenas foram medidos eventos de queda de neve muito longos, ou porque eram desejadas estimativas de áreas amplas, ou devido a limitações nos métodos de amostragem manual e outras questões técnicas. As medições também foram contidas em uma pequena área para garantir que todos os instrumentos registrassem dados do mesmo alvo. Um radar e o lidar óptico registraram um perfil atmosférico de até 6000 m, enquanto o outro radar, o sistema de imagem e as duas balanças registraram queda de neve no nível do solo. A combinação de observações ópticas, de micro-ondas e visuais diretas da queda de neve mostra que uma mudança nas condições das nuvens pode resultar em nevascas com características diferentes. O retroespalhamento lidar foi utilizado como principal indicador de transições nas condições de nuvens. Uma avaliação visual direta da distribuição do tamanho do floco de neve usando uma câmera CCD mostra que ela é extremamente útil para interpretar dados de radar. A distribuição de velocidade observada pela câmera não mostrou grandes variações entre os eventos de queda de neve, no entanto, pode ser útil na detecção de precipitações de graupel e granizo que têm velocidades terminais muito mais rápidas. Este artigo terminará com uma discussão sobre como elaborar melhor o uso de lidar e dados visuais para complementar as observações de queda de neve por radar.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copiar
Henri SERVOMAA, Ken-ichiro MURAMOTO, Toru SHIINA, "Snowfall Characteristics Observed by Weather Radars, an Optical Lidar and a Video Camera" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 8, pp. 1314-1324, August 2002, doi: .
Abstract: This paper introduces an automatic and multi-instrument snowfall observation system and proposes techniques that could be used in the estimation of snowfall characteristics. The instruments used in this study include two microwave radars, an optical lidar, a CCD camera based imaging system and high-accuracy electrical balances for reference data. The emphasis has been on obtaining good temporal resolution and synchronization accuracy of separate datasets. In most research done so far, this has not been a principal point, either because only very long snowfall events have been measured, or wide area estimates were desired, or due to limitations in manual sampling methods and other technical issues. The measurements were also contained in a small area to make sure that all instruments record data from the same target. One radar and the optical lidar recorded an atmospheric profile up to 6000 m, while the other radar, the imaging system and the two balances recorded snowfall on the ground level. The combination of optical, microwave and direct visual observations of snowfall show that a change in cloud conditions can result in snowfall having different characteristics. The lidar backscatter was used as main indicator of transitions in cloud conditions. A direct visual evaluation of snowflake size distribution using a CCD camera shows that it is extremely helpful in order to interpret radar data. The camera observed velocity distribution showed no large variations between snowfall events, however, it could be useful in detecting graupel and hail precipitations which have much faster terminal velocities. This paper will conclude with a discussion on further elaborating the use of lidar and visual data to complement radar observations of snowfall.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_8_1314/_p
Copiar
@ARTICLE{e85-d_8_1314,
author={Henri SERVOMAA, Ken-ichiro MURAMOTO, Toru SHIINA, },
journal={IEICE TRANSACTIONS on Information},
title={Snowfall Characteristics Observed by Weather Radars, an Optical Lidar and a Video Camera},
year={2002},
volume={E85-D},
number={8},
pages={1314-1324},
abstract={This paper introduces an automatic and multi-instrument snowfall observation system and proposes techniques that could be used in the estimation of snowfall characteristics. The instruments used in this study include two microwave radars, an optical lidar, a CCD camera based imaging system and high-accuracy electrical balances for reference data. The emphasis has been on obtaining good temporal resolution and synchronization accuracy of separate datasets. In most research done so far, this has not been a principal point, either because only very long snowfall events have been measured, or wide area estimates were desired, or due to limitations in manual sampling methods and other technical issues. The measurements were also contained in a small area to make sure that all instruments record data from the same target. One radar and the optical lidar recorded an atmospheric profile up to 6000 m, while the other radar, the imaging system and the two balances recorded snowfall on the ground level. The combination of optical, microwave and direct visual observations of snowfall show that a change in cloud conditions can result in snowfall having different characteristics. The lidar backscatter was used as main indicator of transitions in cloud conditions. A direct visual evaluation of snowflake size distribution using a CCD camera shows that it is extremely helpful in order to interpret radar data. The camera observed velocity distribution showed no large variations between snowfall events, however, it could be useful in detecting graupel and hail precipitations which have much faster terminal velocities. This paper will conclude with a discussion on further elaborating the use of lidar and visual data to complement radar observations of snowfall.},
keywords={},
doi={},
ISSN={},
month={August},}
Copiar
TY - JOUR
TI - Snowfall Characteristics Observed by Weather Radars, an Optical Lidar and a Video Camera
T2 - IEICE TRANSACTIONS on Information
SP - 1314
EP - 1324
AU - Henri SERVOMAA
AU - Ken-ichiro MURAMOTO
AU - Toru SHIINA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 2002
AB - This paper introduces an automatic and multi-instrument snowfall observation system and proposes techniques that could be used in the estimation of snowfall characteristics. The instruments used in this study include two microwave radars, an optical lidar, a CCD camera based imaging system and high-accuracy electrical balances for reference data. The emphasis has been on obtaining good temporal resolution and synchronization accuracy of separate datasets. In most research done so far, this has not been a principal point, either because only very long snowfall events have been measured, or wide area estimates were desired, or due to limitations in manual sampling methods and other technical issues. The measurements were also contained in a small area to make sure that all instruments record data from the same target. One radar and the optical lidar recorded an atmospheric profile up to 6000 m, while the other radar, the imaging system and the two balances recorded snowfall on the ground level. The combination of optical, microwave and direct visual observations of snowfall show that a change in cloud conditions can result in snowfall having different characteristics. The lidar backscatter was used as main indicator of transitions in cloud conditions. A direct visual evaluation of snowflake size distribution using a CCD camera shows that it is extremely helpful in order to interpret radar data. The camera observed velocity distribution showed no large variations between snowfall events, however, it could be useful in detecting graupel and hail precipitations which have much faster terminal velocities. This paper will conclude with a discussion on further elaborating the use of lidar and visual data to complement radar observations of snowfall.
ER -